The Gold Coast Cyclone (1954)¶
See also
Download the data required:
#!/usr/bin/env python
import IRData.twcr as twcr
import datetime
dte=datetime.datetime(1954,2,1)
for version in ('2c','4.5.1'):
twcr.fetch('prmsl',dte,version=version)
twcr.fetch_observations(dte,version=version)
Make the figure:
#!/usr/bin/env python
# US region weather plot
# Compare pressures from 20CRV3 and 20CRV2c
import math
import datetime
import numpy
import pandas
import iris
import iris.analysis
import matplotlib
from matplotlib.backends.backend_agg import \
FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
import cartopy
import cartopy.crs as ccrs
import Meteorographica as mg
import IRData.twcr as twcr
# Date to show
year=1954
month=2
day=18
hour=0o2
dte=datetime.datetime(year,month,day,hour)
# Landscape page
fig=Figure(figsize=(22,22/math.sqrt(2)), # Width, Height (inches)
dpi=100,
facecolor=(0.88,0.88,0.88,1),
edgecolor=None,
linewidth=0.0,
frameon=False,
subplotpars=None,
tight_layout=None)
canvas=FigureCanvas(fig)
# Tasman-centred projection
projection=ccrs.RotatedPole(pole_longitude=335, pole_latitude=125)
scale=30
extent=[scale*-1,scale,scale*-1*math.sqrt(2),scale*math.sqrt(2)]
# Two side-by-side plots
ax_2c=fig.add_axes([0.01,0.01,0.485,0.98],projection=projection)
ax_2c.set_axis_off()
ax_2c.set_extent(extent, crs=projection)
ax_3=fig.add_axes([0.505,0.01,0.485,0.98],projection=projection)
ax_3.set_axis_off()
ax_3.set_extent(extent, crs=projection)
# Background, grid and land for both
ax_2c.background_patch.set_facecolor((0.88,0.88,0.88,1))
ax_3.background_patch.set_facecolor((0.88,0.88,0.88,1))
mg.background.add_grid(ax_2c)
mg.background.add_grid(ax_3)
land_img_2c=ax_2c.background_img(name='GreyT', resolution='low')
land_img_3=ax_3.background_img(name='GreyT', resolution='low')
# Add the observations from 2c
obs=twcr.load_observations_fortime(dte,version='2c')
mg.observations.plot(ax_2c,obs,radius=0.15)
# Highlight the Hurricane obs
obs_h=obs[obs['NCEP.Type']==360]
if not obs_h.empty:
mg.observations.plot(ax_2c,obs_h,radius=0.25,facecolor='red',
zorder=100)
# load the 2c pressures
prmsl=twcr.load('prmsl',dte,version='2c')
# Contour spaghetti plot of ensemble members
mg.pressure.plot(ax_2c,prmsl,scale=0.01,type='spaghetti',
resolution=0.25,
levels=numpy.arange(870,1050,10),
colors='blue',
label=False,
linewidths=0.1)
# Add the ensemble mean - with labels
prmsl_m=prmsl.collapsed('member', iris.analysis.MEAN)
mg.pressure.plot(ax_2c,prmsl_m,scale=0.01,
resolution=0.25,
levels=numpy.arange(870,1050,10),
colors='black',
label=True,
linewidths=2)
# 20CR2c label
mg.utils.plot_label(ax_2c,'20CR 2c',
facecolor=fig.get_facecolor(),
x_fraction=0.02,
horizontalalignment='left')
# V3 panel
# Add the observations from v3
obs=twcr.load_observations_fortime(dte,version='4.5.1')
mg.observations.plot(ax_3,obs,radius=0.15)
# Highlight the Hurricane obs
obs_h=obs[obs['NCEP.Type']==360]
if not obs_h.empty:
mg.observations.plot(ax_3,obs_h,radius=0.25,facecolor='red',
zorder=100)
# load the V3 pressures
prmsl=twcr.load('prmsl',dte,version='4.5.1')
# Contour spaghetti plot of ensemble members
# Only use 56 members to match v2c
prmsl_r=prmsl.extract(iris.Constraint(member=list(range(0,56))))
mg.pressure.plot(ax_3,prmsl_r,scale=0.01,type='spaghetti',
resolution=0.25,
levels=numpy.arange(870,1050,10),
colors='blue',
label=False,
linewidths=0.1)
# Add the ensemble mean - with labels
prmsl_m=prmsl.collapsed('member', iris.analysis.MEAN)
mg.pressure.plot(ax_3,prmsl_m,scale=0.01,
resolution=0.25,
levels=numpy.arange(870,1050,10),
colors='black',
label=True,
linewidths=2)
mg.utils.plot_label(ax_3,'20CR v3',
facecolor=fig.get_facecolor(),
x_fraction=0.02,
horizontalalignment='left')
mg.utils.plot_label(ax_3,
'%04d-%02d-%02d:%02d' % (year,month,day,hour),
facecolor=fig.get_facecolor(),
x_fraction=0.98,
horizontalalignment='right')
# Output as png
fig.savefig('V3vV2c_Gold_Coast_%04d%02d%02d%02d.png' %
(year,month,day,hour))