Stripes plotting codeΒΆ
Parallise the calculation by extracting the data sample for each year independently:
#!/usr/bin/env python
# 20CRv3 stripes.
# Monthly, resolved in longitude, averaging in latitude,
# sampling the ensemble.
# Get the sample for a specified year
import os
import iris
import numpy
import datetime
import pickle
import matplotlib
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
from matplotlib.patches import Rectangle
from matplotlib.lines import Line2D
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--year", help="Year",
type=int,required=True)
parser.add_argument("--opdir", help="Directory for output files",
default="%s/20CR/version_3/analyses/Stripes/TMP2m_lon" % \
os.getenv('SCRATCH'),
type=str,required=False)
args = parser.parse_args()
if not os.path.isdir(args.opdir):
os.makedirs(args.opdir)
# Fix dask SPICE bug
import dask
dask.config.set(scheduler='single-threaded')
start=datetime.datetime(args.year,1,1,0,0)
end=datetime.datetime(args.year,12,31,23,59)
from get_sample import get_sample_cube
cpkl="%s/20CR/version_3/monthly_means/TMP2m.climatology.1961-90.pkl" % os.getenv('SCRATCH')
climatology=pickle.load(open(cpkl,'rb'))
rst = numpy.random.RandomState(seed=None)
dts=[]
ndata=None
for year in range(start.year,end.year+1,1):
ey = min(year+1,end.year)
(ndyr,dtyr) = get_sample_cube(datetime.datetime(year,1,1,0,0),
datetime.datetime(year,12,31,23,59),
climatology=climatology,
new_grid=climatology[0],rstate=rst)
dts.extend(dtyr)
if ndata is None:
ndata = ndyr
else:
ndata = numpy.ma.concatenate((ndata,ndyr))
cspf = "%s/%04d.pkl" % (args.opdir,args.year)
pickle.dump((ndata,dts),open(cspf,'wb'))
And then running that script for each year as a separate task:
#!/usr/bin/env python
# Scripts to make slices for every month
import os
import datetime
for year in range (1806,2016):
print("./get_slice.py --year=%d" % year )
Then assemble the slices to make the figure:
#!/usr/bin/env python
# 20CRv3 stripes.
# Monthly, resolved in longitude, averaging in latitude,
# sampling across ensemble.
import os
import iris
import numpy
import datetime
import pickle
import matplotlib
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
from matplotlib.patches import Rectangle
from matplotlib.lines import Line2D
start=datetime.datetime(1806,1,1,0,0)
end=datetime.datetime(2015,12,31,23,59)
dts=[]
ndata=None
for year in range(start.year,end.year+1,1):
sfile="%s/20CR/version_3/analyses/Stripes/TMP2m_lon/%04d.pkl" % \
(os.getenv('SCRATCH'),year)
with open(sfile, "rb") as f:
(ndyr,dtyr) = pickle.load(f)
dts.extend(dtyr)
if ndata is None:
ndata = ndyr
else:
ndata = numpy.ma.concatenate((ndata,ndyr))
# Plot the resulting array as a 2d colourmap
fig=Figure(figsize=(19.2,6), # Width, Height (inches)
dpi=300,
facecolor=(0.5,0.5,0.5,1),
edgecolor=None,
linewidth=0.0,
frameon=False,
subplotpars=None,
tight_layout=None)
canvas=FigureCanvas(fig)
matplotlib.rc('image',aspect='auto')
# Add a textured grey background
s=(2000,600)
ax2 = fig.add_axes([0.02,0.05,0.98,0.95],facecolor='green')
ax2.set_axis_off()
nd2=numpy.random.rand(s[1],s[0])
clrs=[]
for shade in numpy.linspace(.42+.01,.36+.01):
clrs.append((shade,shade,shade,1))
y = numpy.linspace(0,1,s[1])
x = numpy.linspace(0,1,s[0])
img = ax2.pcolormesh(x,y,nd2,
cmap=matplotlib.colors.ListedColormap(clrs),
alpha=1.0,
shading='gouraud',
zorder=10)
# Plot the stripes
ax = fig.add_axes([0.02,0.05,0.98,0.95],facecolor='black',
xlim=((start+datetime.timedelta(days=1)).timestamp(),
(end-datetime.timedelta(days=1)).timestamp()),
ylim=(1,0))
ax.set_axis_off()
ndata=numpy.transpose(ndata)
s=ndata.shape
y = numpy.linspace(0,1,s[0]+1)
x = [(a-datetime.timedelta(days=15)).timestamp() for a in dts]
x.append((dts[-1]+datetime.timedelta(days=15)).timestamp())
img = ax.pcolorfast(x,y,numpy.cbrt(ndata),
cmap='RdYlBu_r',
alpha=1.0,
vmin=-1.7,
vmax=1.7,
zorder=100)
# Add a latitude grid
axg = fig.add_axes([0.0,0.05,1,0.95],facecolor='green',
xlim=((start+datetime.timedelta(days=1)).timestamp(),
(end-datetime.timedelta(days=1)).timestamp()),
ylim=(0,1))
axg.set_axis_off()
def add_lonline(ax,longitude):
latl = (longitude)/360
startt=start.timestamp()+(end.timestamp()-start.timestamp())*0.02
ax.add_line(Line2D([startt,end.timestamp()],
[latl,latl],
linewidth=0.75,
color=(0.2,0.2,0.2,1),
zorder=200))
tx=start.timestamp()+(end.timestamp()-start.timestamp())*0.019
ax.text(tx,latl,
"%d" % longitude,
horizontalalignment='right',
verticalalignment='center',
color='black',
size=14,
clip_on=True,
zorder=200)
for lon in (60,120,180,240,300):
add_lonline(axg,lon)
# Add a date grid
axg = fig.add_axes([0.02,0,0.98,1],facecolor='green',
xlim=((start+datetime.timedelta(days=1)).timestamp(),
(end-datetime.timedelta(days=1)).timestamp()),
ylim=(0,1))
axg.set_axis_off()
def add_dateline(ax,year):
x = datetime.datetime(year,1,1,0,0).timestamp()
ax.add_line(Line2D([x,x], [0.04,1.0],
linewidth=0.75,
color=(0.2,0.2,0.2,1),
zorder=200))
ax.text(x,0.024,
"%04d" % year,
horizontalalignment='center',
verticalalignment='center',
color='black',
size=14,
clip_on=True,
zorder=200)
for year in range(1810,2020,10):
add_dateline(axg,year)
fig.savefig('TMP2m.png')