# Get the sample cube for 20CR
# Sample in the ensemble.
# Resolved in latitude, average in longitude.
import os
import iris
import numpy
import datetime
from iris.experimental.equalise_cubes import equalise_attributes
import sys
import pickle
def get_sample_cube(start=datetime.datetime(1851,1,1,0,0),
end=datetime.datetime(1900,12,31,23,59),
climatology=None,
climstart=1961,climend=1991,
new_grid=None,rstate=None):
# Might want the longitude random sampling to be reproducible
if rstate is None:
r_lon = numpy.random.RandomState(seed=None)
else:
r_lon = rstate
# Make the climatology, if not supplied
if climatology is None:
climatology=[]
e=[]
for year in range(1961,1991):
h = None
for member in range(1,81):
f=iris.load_cube('%s/20CR/version_3/monthly_means/%04d/PRATE.%04d.mnmean_mem%03d.nc' %
(os.getenv('SCRATCH'),year,year,member),
iris.Constraint(name='Precipitation rate'))
if h is None:
h=f
else:
h.data += f.data
h.data /= 80
h.attributes=None
e.append(h)
e=iris.cube.CubeList(e).concatenate_cube()
for month in range(1,13):
m=e.extract(iris.Constraint(time=lambda cell: cell.point.month == month))
climatology.append(m.collapsed('time', iris.analysis.MEAN))
# Load the model data
e=[]
dts=None
for member in range(1,81):
m = []
for year in range(start.year,end.year+1):
h=iris.load_cube('%s/20CR/version_3/monthly_means/%04d/PRATE.%04d.mnmean_mem%03d.nc' %
(os.getenv('SCRATCH'),year,year,member),
iris.Constraint(name='Precipitation rate') &
iris.Constraint(time=lambda cell: \
start <= cell.point <=end))
dty=h.coords('time')[0].units.num2date(h.coords('time')[0].points)
# Anomalise
for tidx in range(len(dty)):
midx=dty[tidx].month-1
h.data[tidx,:,:] -= climatology[midx].data
if new_grid is not None:
h = h.regrid(new_grid,iris.analysis.Nearest())
h.attributes=None
h2=h
if len(m)>0:
# Workaround for metadata bug from varying versions of HDF library
h2=m[0].copy()
h2.data=h.data
h2.remove_coord('time')
h2.add_dim_coord(h.coord('time'),data_dim=0)
m.append(h2)
e.append(iris.cube.CubeList(m).concatenate_cube())
if member==1:
if dts is None:
dts=dty
else:
dts=numpy.concatenate(dts,dty)
# Make ensemble mean
em=e[0]
for m in range(1,80):
em += e[m]
em /= 80
# Average in Longitude
s=em.data.shape
ndata=numpy.ma.array(numpy.zeros((s[0],s[1])),mask=True)
for t in range(s[0]):
for lat in range(s[1]):
ndata[t,lat]=numpy.mean(em.data[t,lat,:])
return (ndata,dts)